If it's not what You are looking for type in the equation solver your own equation and let us solve it.
.5n^2-5n-153=0
a = .5; b = -5; c = -153;
Δ = b2-4ac
Δ = -52-4·.5·(-153)
Δ = 331
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{331}}{2*.5}=\frac{5-\sqrt{331}}{1} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{331}}{2*.5}=\frac{5+\sqrt{331}}{1} $
| (3x-32)=(2x+21) | | (2x-29)=95 | | x+5x-3=3 | | t+25=55 | | 3-+(5x-5)+(3x+55)=180 | | t-25=55 | | 4(3n+2)-5=0 | | 20y=12 | | 7/3z-14/15=7/15 | | 5j+-3j-3j=-11 | | 42=x+15 | | 2a-12/3=4a | | 12g=26 | | 4x+50=9x+3 | | 200/10-27/x=1.1x | | 4=g/6 | | (3x−2)(2x+3)=0 | | 6=d/9 | | 5x=-1-10 | | -5+3(-2w-2)=−4w−1−w | | 120-4x+5x=0 | | 1/5x+1/4=5(4/5x+4) | | 20y=11 | | 5y2–4y+5=0= | | 5y2–4y+5=0 | | 15x+14=5(45x+4)15x+14=5(45x+4) | | 27(c+7)=675 | | −5+3(−2w−2)= −4w−1−w−4w−1−w | | 5w=-200 | | 3q2–3q–7=0 | | 8(n-849)=920 | | 3q2+8q+9=0 |